Дарвинизм. Генотип и фенотип.
Иогансен первый установил понятия «фенотип» и «генотип». Два организма могут иметь совершенно различное наследственное содержание (генотип) при совершенно одинаковом внешнем проявлении их (фенотип). С таким явлением мы напр. встречаемся, когда изучаем с одной стороны гетерозиготные, а с другой— гомозиготные по доминантному признаку формы. Например цвет глаз дрозофилы напрасный цвет следственного строения белый Цвет и дрозофилы строения цвет фенотипически 1 глаз красный цвет 1 будет один и тот же. С другой, стороны, различные по внешнему проявлению особи могут иметь одинаковое наследственное содержание. Так, кактусы под влиянием света изменяют свои плоские отростки в цилиндрические, причем наследственное содержание не меняется.

Дарвинизм. Генотип и фенотип
Одинаковые по своему генотипу канарейки в зависимости от пищи могут иметь различный фенотип. Нельзя по внешнему, проявлению судить о наследственной структуре. Иогансен назвал фенотипом группу особей, кажущихся одинаковыми, независимо от их генетической структуры. В настоящее время под фенотипом обыкновенно понимают совокупность всех признаков данной особи в отличие от генотипа, означающего совокупность ее зачатков или генов. Т. е. каждому организму свойственен один фенотип, в то время как генотипов у него принципиально может быть столько, сколько в нем отдельных клеток, ибо каждая клетка обладает своим набором хромосом и, стало быть, генов, которые могут мутировать независимо от генов остальных клеток и дать генотип, отличный от генотипов других клеток.
В наст, время мы принципиально различаем два генотипа—генотип половых клеток и генотип соматических клеток, которые хотя в подавляющем числе случаев вследствие краткости пути от родителей к детям и совпадают, но тем не менее должны быть принципиально различимы. В первом случае мы имеем наследственный генотип, во втором случае—ненаследственный. Мы можем иметь особь, у которой оба эти генотипа не совпадают друг с другом. Таковы родители всех мутантов. Половые клетки родителей, из которых развиваются мутанты, генотипически отличаются от соматических клеток родителей. Фенотип или внешнее проявление особи есть реализованный генотип соматических клеток. Характеристику фенотипа индивидуума надо искать не в генотипе его половых клеток, а в генотипе обособившихся от клеток зародышевого пути и развившихся независимо от них соматических клеток.
Все изменения, которые произойдут в этом соматическом генотипе на всем пути его жизни, найдут свое отражение в фенотипе организма. Но эти изменения никакого генетического влияния на генотип половых клеток не окажут, хотя физиологическая связь здесь несомненна. Учение Иогансена о фенотипе и генотипе т.е . также дает отрицательное решение вопроса об унаследовании приобретенных признаков, хотя подходит к этой проблеме с другой стороны, чем учение Вейсмана о зародышевом пути.
Дарвинизм и Учение Иогансена о чистых линиях.
Особенно ценное значение в дальнейшем развитии эволюционной мысли получило учение Иогансена о чистых линиях, положившее конец формально-абстрактному подходу к изучению массовых биологических явлений, который особенно ярко процветал в биологии со времени Гальтона и Пирсона, превративших по сути дела законы наследственности в законы математики. Можно и должно разрабатывать массовые биологические явления, явления наследственности при помощи математики, —учит Иогансон, —но мы не можем превратить учение о наследственности в математическую дисциплину. Основной недостаток работ Гальтона, Пирсона и др. заключался в том, что их биометрические исследования производились не на однородном в наследственном отношении материале, что неизбежно должно было привести к неправильным выводам.
Иогансен первый показал наследственную неоднородность популяций, т. е. группы особей вида, территориально связанных между собой. Эти особи могут быть совершенно похожи друг на друга, но их наследственное содержание может оказаться не идентичным. Разные гены очень часто определяют неотличимые друг от друга признаки. Так, одна и та же окраска перьев у курицы не всегда есть результат воздействия одних и тех же генов. Т. е. абстрактно-статистический подход к организму без учета его конкретного наследственного содержания приводит к пустым формулам, чрезвычайно далеким от отражения действительности. Статистические исследования, даже безукоризненно правильные, не могут еще считаться генетическими исследованиями. При изучении наследственности надо исходить не из популяций, а из чистых линий, т. е. из выверенного наследственно однородного материала.
При статистическом анализе генетических явлений необходимо предварительно произвести тщательное генетическое исследование изучаемого материала. Только в этом случае вариационная статистика может играть роль полезного метода исследования. В ряде исследований Иогансен показал, что отбор не в силах отклонить в ту или другую сторону среднюю величину чистой линии. Отбор вообще не имеет никакой силы в пределах чистой линии. Отбирая однородно генотипический материал по тому или иному его отклонению от фенотипа, мы в следующем поколении всегда имеем возврат к родительским формам. Иогансен отбирал в чистой линии фасоли самые крупные и самые мелкие семена, высевал их отдельно и в том и в другом случае неизменно получал возврат к средней линии.
Наоборот, в популяции отбор играет чрезвычайно важную роль. В генотипически разнородном материале ему есть где развернуться, у него есть что выбирать, что отсевать. Из всей массы чистых линий отбор будет выбирать отдельные линии, более приспособленные к окружающим условиям, отметая менее приспособленные, и тем самым перемещая в ту или иную сторону среднюю линию популяции. Т.е. Иогансен показал, что то, что мы называем видом, не представляет собою в наследственном отношении однородного материала. Вид есть смесь, популяция внешне сходных типов (фенотипов), внутренне различных по своим наследственным данным (генотипам). Учение Иогансена о чистых линиях точно определяет границы отбора и в этом отношении оно несомненно является новым словом в Дарвинизме.
Оно разбило наивную веру в наследственную передачу индивидуальных признаков, в возможность смешения средней величины чистой линии путем отбора личных признаков, полученных организмом под воздействием среды. Отбор в пределах чистой линии никакой роли не играет. Свою созидательную работу он может совершить только в популяции, т. е. в совокупности организмов с различным наследственным содержанием. Исследования Иогансена, произведенные в начале нашего века, были проверены над самыми различными животными и растениями, и мы не знаем ни одного отклонения от установленной Иогансеном закономерности.
Дарвинизм. Учение Вейсмана и Иогансена. Проблема физиологических и исторических закономерностей.
Учение Вейсмана и Иогансена, их категорическое отрицание унаследования приобретенных признаков подводят нас к проблеме физиологических и исторических закономерностей. Настаивая на соматической индукции и отвергая дарвиновское учение о естественном отборе, современные психо-и механоламаркисты смешивают две различные вещи—изменчивость и эволюцию. Эволюция организмов есть проблема историческая, а не физиологическая, хотя и физиологические процессы несомненно играют роль в эволюции организмов. Одна изменчивость и даже наследственная изменчивость не есть еще эволюция. Наследственная изменчивость сама по себе есть проблема генетики и включается в эволюционное учение только через учение о естественном отборе.
Несколько конкретных примеров помогут нам выяснить принципиальную разницу между физиологическими и историческими закономерностями. Возьмем окраску и форму крыла у бабочки каллимы, удивительно совпадающие с окраской и формой листьев. Физиологическому исследованию подлежит вопрос о том, какие внутренние процессы привели к подобной организации крыла у бабочки. Проблема же эволюции лежит в другой плоскости. Она ищет ответа на совершенно другой вопрос, а именно на вопрос, почему крылья бабочки по своей окраске и форме совпадают с окраской, и формой листьев. Несомненно, что на процесс образования подобных крыльев большое влияние в числе других факторов среды оказал глаз хищника. Но как влиял этот глаз? Очевидно, мы здесь имеем дело не с физиологическим, не с непосредственным влиянием.
Форма п окраск крыльев сохранились именно потому, что глаз хищника не замечал или плохо замечал их, в противном случае бабочки, обладающие ими, были бы просто съедены. Отбор этих форм, их выживание стали возможны именно потому, что непосредственной, конкретной связи между глазом хищника и бабочкой не существовало. Развитие формы и окраски крыльев бабочки находится в тесной связи и зависимости от развития глаза хищника, от развития формы и окраски листьев, скрывающих бабочку, но эта связь и зависимость совершенно иные, чем связь и зависимость, существующие напр. между лучами солнца и нашим зрением.
Другой пример. Хоботок шмеля удивительно приспособлен к медоносным частям клевера. Другие насекомые не могут достать этого меда. На вопрос, как у шмеля образовался подобный хоботок, могут последовать два принципиально различных ответа. Один ответ: стенки цветка клевера своим постоянным давлением на хоботок шмеля, пытавшегося проникнуть в глубь чашечки за медом, приспособили хоботок к себе, придали ему соответствующую форму. Эти постоянные изменения хоботка (соматические изменения) индуцировались на половые клетки и закреплялись в потомстве. Здесь мы имеем чисто физиологическое объяснение процесса. Но тогда совершенно непонятно, почему подобный хоботок вырабатывался только у шмеля, ведь несомненно и другие бабочки неоднократно пытались проникнуть своим хоботком в нектарник клевера за нектаром.
Другое объяснение, историческое: совершенно независимо от развития медоносных частей клевера среди множества других форм хоботков у шмелей случайно возникла мутация хоботка, лучше других подходившая к форме нектарника клевера. Естественный отбор подхватил эту мутацию и уничтожил все остальные формы как менее приспособленные. Связь между развитием хоботка шмеля и развитием нектарника клевера и при этом объяснении является несомненной, но связь эта не непосредственная, не физиологическая, а историческая. Хоботок шмеля изменялся совершенно не потому, что на него давили стенки цветка клевера. Его изменение шло по его собственным закономерностям и определялось его наследственным генотипом. Но клевер кормил не всякого шмеля с любым хоботком.
Подавляющее большинство шмелей гибло из-за отсутствия пищи, оставались только те из них, у кого хоботок мог так или иначе проникнуть в глубь цветка и достать мед. То же самое должно сказать и о развитии цветка клевера. Изменение цветка шло по своим собственным закономерностям и определялось наследственным генотипом клевера. Но шмель опылял не всякий цветок, а только тот, который его кормил, т. е. тот, у которого нектарник был лучше всего приспособлен к его хоботку. Клевер с другой, менее приспособленной к хоботку шмелей, формой медоносных частей оставался неопыленным и выводился из строя, он погибал для эволюционного процесса. С точки зрения занимающего нас вопроса о физиологических и исторических закономерностях чрезвычайно интересна эволюция рабочих пчел.
Известно, что рабочая пчела снабжена специальными приспособлениями для сбора меда и пыльцы с цветов. Физиологическое объяснение происхождения этих приспособлений будет приблизительно заключаться в следующем: постоянная работа вызывает изменение лапки у рабочей пчелы. Это соматическое изменение физиологическим путем передается в половые клетки, что ведет к стойкому закреплению его в потомстве. Но подобное физиологическое объяснение эволюции лапок рабочей пчелы не выдерживает критики, ибо как известно рабочие пчелы неспособны размножаться и стало быть о передаче потомству приобретенных ими при жизни признаков не может быть и речи. В размножении участвуют лишь матки и трутни, но эти пчелы никогда не упражняют своих лапок (по крайней мере в том направлении, в каком их упражняют рабочие пчелы), т. к. они не занимаются сбором ни меда ни пыльцы.
Эволюция приспособительных органов рабочей пчелы, несомненно, зависит от развития форм и строения кормящих ее цветов. Но эта связь и зависимость опять-таки не непосредственная, не физиологическая. Решающую роль здесь играет отбор, причем отбор не бесплодных рабочих пчел, снабженных приспособительными органами для сбора меда и пыльцы, а плодовитых пчел без этих приспособительных органов, но способных давать в потомстве рабочих пчел, снабженных аппаратом для сбора меда и пыльцы.
Проблема внутренних и внешних закономерностей в Дарвинизме
Вопрос о физиологических и исторических закономерностях вплотную подводит нас к проблеме внутренних и внешних факторов изменчивости, с одной стороны, и эволюции — с другой, к проблеме, играющей важную роль в споре между дарвинистами и ламаркистами. Каждый организм представляет собой сложившуюся в течение огромного исторического периода живую систему со своими своеобразными закономерностями. Какие операции мы ни произвели бы напр. над икринкой лягушки, мы можем в крайнем случае убить эту икринку, но не изменить ее настолько, чтобы из нее вместо лягушки развилось какое-нибудь другое животное. Признаки организма заранее определены наследственными зачатками, передающимися от родителей к детям.
Больше того, не только признаки, но и характер изменчивости этих признаков в значительной степени также определяется состоянием наследственного генотипа, т. е. внутренними закономерностями самой системы, а не внешними, которым в процессе изменчивости принадлежит только роль провоцирующего фактора. Организм—не воск, из которого «всесильная обстановка» может лепить, что ей угодно. Любая мутация, т. е. любое наследственное изменение, может быть вызвана, принципиально говоря, большим количеством самых разнообразных внешних факторов. Напр. изменение обычных красных глаз дрозофилы в белые наблюдалось десятки раз в самых различных условиях, т.е. одно и то же изменение наблюдалось под влиянием различных воздействий различных сред.
Стало быть, не внешняя среда определяла это наследственное изменение, ибо в противном случае мы каждый раз под влиянием другой внешней среды должны были бы получать другую мутацию, а внутренние закономерности, управляющие процессами наследственности дрозофилы. Одно и то же внешнее влияние может вызвать у различных организмов различные наследственные изменения. Рентгенизуя дрозофил, мы получаем в одном опыте, в одной и той же банке у разных мух различные мутации:
1. у одной мухи может оказаться измененной окраска глаз,
2. у другой—их форма,
3. у третьей произойдет изменение крыльев,
4. у четвертой—щетинок,
5. у пятой—брюшка и т. д.
Стало быть специфическим для процессов изменчивости является не среда, а сама живая система, ее наследственное содержание. Внешние факторы, воздействуя на организм, несомненно, могут его изменить, но характер вызванного ими изменения зависит не от них, а от внутренних закономерностей самого организма.
Наоборот, в эволюционном процессе внешние факторы выступают на первый план в качестве основных определителей процесса. Направление эволюции органического мира дает не изменчивость, а естественный отбор, т. е. вся совокупность внешних условий, в которых обитает изменяющийся органический мир. Одна и та же мутация в разных условиях может иметь различную судьбу. В одних условиях она может оказаться превосходно приспособленной и вытеснить всех соперников, конкурирующих с ней в борьбе за существование, в других условиях она может оказаться совершенно беспомощной, неприспособленной и вытесненной другими. Эволюция в этих случаях пойдет по различным путям.
Бескрылые насекомые не в состоянии выдержать конкуренцию крылатых в условиях жизни на материке, они не могут угнаться за своими соперниками ни в смысле добывания себе пищи ни в смысле ухода от преследования врага и неизбежно должны погибнуть. Другое дело—в условиях жизни на небольших островках вдали от материков. Постоянные ветры заносят далеко в море тех насекомых, которые держатся в воздухе, и в этом отношении крылатые подвержены несравненно большей опасности для жизни, чем бескрылые, и не в состоянии выдержать конкуренцию с ними в жизненной борьбе. В результате эти насекомые, как менее приспособленные в данных условиях, уступают свое место бескрылым. Т.е . основным рычагом, дающим направление эволюционному процессу, является среда, внешние условия, а не внутренние закономерности, не изменчивость сама по себе.
Конечно, для того чтобы была эволюция, необходим изменяющийся органический мир, но изменчивость сама по себе не есть еще эволюция, она становится ею только под влиянием отбора. Ламаркизм в процессах изменчивости выпячивает роль внешних факторов и не видит определяющей роли внутренних закономерностей, в процессах же эволюции он, наоборот, недооценивает ведущей роли среды, сводят эволюцию к простой изменчивости. Оба процесса в ламаркистском освещении перевернуты вверх ногами.
Дарвинизме и Генетическая диффузия.
Дарвин, сначала довольно неодобрительно отзывавшийся об эволюционной теории своего предшественника Ж. Ламарка, к концу своей жизни стал относиться к ней более доброжелательно. Такая перемена во взглядах Дарвина в значительной степени объясняется попыткой преодолеть некоторые затруднения, выявившиеся в результате дискуссии по поводу его теории. Дарвин первоначально считал, что материал, с которым имеет дело естественный отбор, доставляется случайными индивидуальными изменениями отдельных организмов. Каждое такое единичное изменение подхватывается отбором и в зависимости от степени его приспособленности сохраняется для жизни или уничтожается.
Многие критики Дарвинизма особенно возражали против приписываемого Дарвином именно этой единичной изменчивости огромной роли в процессе эволюции. Сам Дарвин все более и более склонялся считать возражения по этой линии в основном правильными. Особенно убедительной ему показалась критика инженера Дженкина, который простыми арифметическими вычислениями показал, что случайно возникшие единичные изменения, даже самые полезные для их обладателя, не могут сохраниться при наличии свободного скрещивания, а неизбежно должны поглотиться и раствориться в море нормальных особей вида. Свободное скрещивание нивелирует отдельные уклонения, которые де таким образом теряют всякое значение для отбора.
Эта критика заставила Дарвина несколько изменить свою первоначальную точку зрения на значение единичных изменений в эволюционном процессе, и он стал приписывать все большую и большую роль в процессе эволюции массовым отклонениям. А т. к. массовые изменения, всегда возникающие под влиянием внешних воздействий, являются соматическими, а не наследственными изменениями, то, допуская их роль в эволюционном процессе, Дарвин тем самым становился на точку зрения соматической индукции, т.е . склонялся к ламаркистской интерпретации эволюционного процесса, интерпретации, отвергавшейся им самим при первом обосновании его теории. «Поглощающее влияние свободного скрещивания» в пределах вида вынуждало не только Дарвина, но и многих других теоретиков биологии склоняться в сторону ламаркизма.
Современная генетика дает нам ключ к разрешению некоторых трудностей, стоявших перед Дарвином в этом вопросе. Основная трудность заключалась в том, что старая биология рассматривала «смешение крови» при скрещивании, как действительное «смешение», как действительное органическое растворение одной крови в другой. «Смешение крови» для старых биологов было не образное выражение, а реальный факт. Когда они говорили о растворении новых наследственных изменений при свободном скрещивании, они имели в виду действительное растворение, реальное уничтожение этих изменений. Современная генетика доказывает, что никакого растворения гена в буквальном смысле нет.
Новая мутация (рецессивная) действительно поглощается видом при свободном скрещивании, но не растворяется, а остается в нем в скрытом, в гетерозиготном состоянии довольно продолжительное время, переходя из поколения в поколение в виде определенного наследственного генотипа. Каждый вид насыщен такими рецессивными мутациями, возникающими у той или другой особи в разное время, но быстро поглощающимися npи свободном скрещивании. Т. е. в каждом виде с течением времени накопляется значительное количество скрытых генов. Вероятность встречи двух одинаковых генов при скрещивании повышается с накоплением повторных генов внутри вида. Время делает свое. Чем больше мутаций возникает в виде, тем имеется большая вероятность появления повторных мутаций и встречи их при скрещивании.
То тут то там начинают появляться гомозиготные формы. И если при этом естественный отбор их не уничтожит, они начинают появляться все чаще и чаще, и производят впечатление массового возникновения мутаций. Чем старше вид, тем он более насыщен скрытыми генами, тем он скорее начинает распадаться на части. Т. е. современная генетика дает простое решение задачи, ставившей Дарвина и других эволюционистов в тупик. Вместе с тем она также показывает, что распространенное мнение о лабильности молодых видов, у которых новые признаки якобы еще не устоялись, не оформились, и об устойчивости старых видов, благодаря достаточному оформлению и закреплению их признаков, —не выдерживает критики.
Генетика доказывает совершенно противоположное: чем старше вид, тем больше он становится внешне наследственно изменчив и стало быть тем больший материал доставляет он естественному отбору. Процесс видообразования становится возможным и неизбежным только после длительной подготовки, после накопления достаточного количества скрытых генов. Возникший новый ген обыкновенно не сразу подпадает под действие отбора, ибо он обыкновенно ничем внешне не проявляется, находясь в скрытом гетерозиготном состоянии.
Дарвинизм. Изоляция как фактор видообразования
Болышая или меньшая вероятность возникновения гомозиготных по какому-нибудь ранее поглощенному видом гену форм находится в зависимости не только от возраста вида, но и от его численности. Чем вид количественно меньше, тем больше шансов встречи друг с другом поглощенных генов при скрещивании, хотя, с другой стороны, чем малочисленнее вид, тем меньше он содержит мутаций, тем меньше вероятность их повторности. Оба эти момента уравновешивают друг друга и создают одинаковые преимущества для дальнейшей эволюции, как для многочисленного, так и для малочисленного вида. Одно обстоятельство может изменить это соотношение условий в пользу малочисленного сообщества. Таким обстоятельством является изоляция. Под влиянием тех или других причин вид может распасться на отдельные изолированные сообщества. В этом случае частота возникновения мутаций не уменьшается, т. к. не уменьшилась и общая численность вида.
Но зато изолированное положение отдельных групп в той или иной степени затруднит свободу скрещивания. Скрытые в отдельных группах гены станут здесь скорее выявляться, вследствие чего эти изолированные группы начнут, чем дальше, тем больше расходиться между собою не только по своему наследственному содержанию, но и по фенотипу. Мы знаем несколько видов изоляции:
§ физиологическую,
§ географическую и др.
Физиологическая изоляция может быть разного рода. Затруднения для свободного скрещивания могут возникнуть вследствие напр. несовпадения периодов размножения у разных групп вида, территориально даже не разобщенных. Так весенний и осенний нерест у разных групп нашей сельди приводит к изоляции этих групп друг от друга.
Подобного рода изоляция вызывается и сезонным диморфизмом некоторых растений. Веттштейн напр. сделал следующее интересное наблюдение. Некоторые виды горечавки (Gentiana), погремка (Alectorolophus) имеют две формы, у кот орых время цветения не совпадает. Одна цветет до сенокоса, другая после него. Близкие виды, растущие в таких местах, где нет сенокоса, встречаются в виде одной формы, цветущей в обычное время. Вмешательство человека, производящего сенокос, разбило мономорфные формы на диморфные, изолировало одну форму от другой, чем содействовало выявлению скрытых в генотипе генов и расщеплению вида.
Особенно важную роль в процессах видообразования играет географическая изоляция. Изучение этого вида изоляции создает необходимость установления новой специальной отрасли биологических знаний, долженствующей иметь крупное теоретическое и практическое значение, —геногеографии. Изучение закономерностей распределения генов по поверхности земли не укладывается в рамки физиологии, ибо речь в данном случае идет не о внутренних физиологических закономерностях организмов. Геногеографию нельзя смешивать также и с отбором, ибо отбор действует на признак, а не на ген. Геногеография имеет свои собственные специфические задачи. Она должна ответить на вопрос, под давлением каких причин происходит распространение различных генов по различным группам организмов, рассеянным на земной поверхности, к каким последствиям это распространение приводит, какую роль оно играет в процессе эволюции, что практически сулит нам эта намечающаяся отрасль знания и т. п.
Пространственная изоляция, с одной стороны, и постоянный процесс возникновения мутаций в условиях свободного скрещивания— с другой, приводят к различной концентрации различных генов в обособленных различными географическими пунктами группах вида. Географическое распространение генов является результатом длительного исторического процесса. История животного и растительного мира записана не только в глубоких пластах земли, чему нас учит палеонтология, но и в путях распространения тех или иных генов, в местах их различных концентраций, в геногеографии. В работах Дарвиниста А. С. Серебровского по геногеографии домашних кур можно найти чрезвычайно много интересных данных, показывающих, как изучение географического распространения отдельных генов приводит к раскрытию путей эволюции их обладателей.
Основным распределяющим фактором является генетическая диффузия, т. е. всасывание отдельных генов в основной массив и медленное равномерное распределение их по всему району. Пока диффузия не привела к равномерному распределению генов, мы всегда можем найти некоторый центр с максимальной концентрацией данных генов, от которого по концентрическим кругам отходят районы со псе меньшей и меньшей концентрацией.
Нахождение и изучение центров концентрации генов имеет не только теоретическое, но и крупное практическое значение. «-В Ливенском центре,—пишет А. Серебровский,— у нас имеется запас (огромный) ценнейших генов (укрупнителей яиц и кур), использовать который мы должны не путем заготовок в этом районе битой птицы, а путем объявления этого района „генетическим заповедником» и развоза оттуда этих ценных генов во все те районы, где они смогут быть утилизированы».
Дарвинизм т Мутационный процесс.
В изменении состава генов в данном районе участвуют мутационный процесс и отбор. Мутации у отдельных особей возникают случайно. В этом отношении Дарвин совершенно прав, когда утверждает, что естественный отбор основывается на случайных наследственных изменениях отдельных индивидуумов. Но по отношению к популяциям, к большим группам организмов и к виду мутационный процесс перестал уже быть случайностью, он переходит в закономерность. Подобно тому, как каждое случайное опускание в почтовый ящик письма без указания адреса в массовом масштабе создает определенную закономерность (количество писем без указания адреса, опущенных в почтовые ящики, в больших городах при прочих равных условиях пропорционально количеству населения), подобно этому в определенный отрезок времени мутации претерпевает определенный процент генов.
Так, случайные мутационные изменения отдельных индивидуумов в массовом масштабе перерастают в закономерный специфический процесс мутационной изменчивости коллектива. Широко применяющийся уже в наст, время метод искусственного получения мутаций, открытый Моллером, свидетельствует, что причины возникновения мутаций надо искать в окружающей среде. Подтверждение этому мы видим в опытах Бабкока и Коллинса, Ольсона и Льюиса, а также Гансона и Гейса, и некоторых других. Первые два автора подвергли некоторые свои дрозофильные культуры естественной ионизации в железнодорожном тоннеле в С.-Франциско. Тщательные исследования при помощи электроскопа показали, что степень ионизации в данном тоннеле в два раза выше, чем в лаборатории этих авторов в Берклее. Культуры, воспитывавшиеся в тоннеле, дали гораздо больший процент мутаций (леталей), чем контрольные культуры в лабораторных условиях.
Аналогичные результаты дали опыты Гансона и Гейса в одной из шахт Колорадо, где естественная ионизация была гораздо выше, чем в лабораторных условиях в Сен-Луи. То же самое получили и Ольсон и Лыоис в своих исследованиях культур, воспитанных недалеко от свинцовых шахт Миссури. Эти опыты показывают, что мутационный процесс есть не только результат искусственных воздействий, как его пытаются некоторые представить, а широко распространенное в природе явление. Этот факт следует особенно подчеркнуть в связи с тем, что в последнее время стали появляться высказывания, будто «естественные условия» менее резко влияют на организм, менее «ломают» его, чем искусственная среда, особенно лабораторная рентгенизация, а потому де нельзя придавать мутациям, получаемым в лабораторных условиях, какое-либо значение для эволюционного процесса. Это просто, мол, аномалии, вызванные искусственными условиями, не встречающимися в естественной обстановке, —настоящий же процесс видообразования идет другими, неведомыми нам путями.
Эти высказывания не выдерживают критики не только с точки зрения вышеприведенных опытов. Они неприемлемы и с методологической точки зрения. Сразу подметить и уловить какую-нибудь вновь возникшую мутацию в естественных условиях, несомненно, труднее, чем в лаборатории, ибо она теряется среди огромного населения. Процессы поглощения, всасывания, диффузии скрывают эту мутацию от наших глаз, и только после долгого процесса внутренней перестройки популяции эти мутации в гомозиготной форме то тут то там будут вспыхивать на поверхности, производя впечатление внезапной массовой изменчивости. Тот факт, что в естественных условиях редко можно заметить вновь возникшие мутации, совсем не говорит за то, что мутации в природе не возникают. Современная генетика показывает, как они возникают и по каким путям они проходят до того, как овладеют видом.
Существует также мнение, что возникающие в лабораторных условиях изменения генов представляют собою болезненный процесс. Мотивом для подобного суждения служит то обстоятельство, что число вредных для организмов мутаций чрезвычайно велико сравнительно с незначительным количеством нейтральных, не говоря уже о полезных. Это обстоятельство также служит для некоторых достаточным основанием. Для отрицания роли мутаций в эволюционном процессе: эволюция, мол, как естественный, закономерный процесс должен базироваться на чем-то «более здоровом», «более естественном». Подобная постановка вопроса не выдерживает критики. Любой организм представляет собою чрезвычайно тонкий, на протяжении сотен тысячелетий сложившийся механизм, б. или м. хорошо приспособленный к окружающим его условиям. Вывести этот механизм из «нормального» состояния, «испортить» его гораздо легче, чем «исправить», тем более, что процесс изменчивости идет стихийно слепо. Кроме того далеко не всегда можно в лабораторных условиях судить о полезности, бесполезности или вредности того или иного признака. Как оценить напр. бескрылость у насекомого? Будет ли это полезная или вредная мутация?
В лабораторных условиях ответить на этот вопрос невозможно. На небольшом острове среди океана «бескрылость» может стать полезной мутацией, т. к. бескрылое насекомое труднее и реже крылатого может быть относимо ветром в океан. На материке же подобная мутация окажется менее приспособленной, чем насекомые, снабженные крыльями, и неизбежно будет сметена отбором.Мы не всегда можем судить о полезности или вредности той или иной мутации еще и потому, что не всякий ген имеет морфологическое выражение. Мы знаем довольно много генов, имеющих чрезвычайно важное значение для организма, но ничем морфологически себя не проявляющих. Таковы напр. гены, определяющие холодостойкость некоторых злаков или, наоборот, слабую устойчивость их в холодном климате, гены, определяющие природный иммунитет различных организмов к различным инфекциям, и т. п. В лабораторных условиях вновь возникшие, но ничем не выраженные морфологически мутации могут вообще остаться незамеченными в то время, как в естественных условиях они могут оказаться чрезвычайно важными.
Но, несмотря на все это, несомненно, однако, что вредные мутации возникают несравненно чаще полезных. Одних деталей, т.е . генов, убивающих организм, у дрозофилы уже известно несколько сотен. Число открытых новых деталей с каждым днем все возрастает. Мутационный процесс, изменяя закономерности слагавшейся миллионами лет живой системы, в редких случаях может направить ее течение в лучшую для организма сторону. Обыкновенно же он неизбежно должен привести к ухудшению организации. Этим ж объясняется и тот факт, что доминантные мутации встречаются гораздо реже рецессивных. Доминантная мутация в отличие от рецессивной сразу подпадает под действие естественного отбора, она всегда «на виду», гетерозиготное состояние не может задержать ее проявления, она не в состоянии накопляться и обыкновенно очень скоро уничтожается отбором.
В случае же ее полезности она сравнительно быстро вытеснит конкурирующий с ней рецессивный ген и займет его место в качестве равноправного компонента т. н. нормы.. Что касается вопроса о конкретном характере внутренних процессов мутационной изменчивости, то здесь мы прежде всего упираемся в проблему природы и строения гена. К этому вопросу генетика только подходит. Несмотря на чрезвычайно важные закономерности, открытые в наст, время исследованиями американских (Демереу, Истер, Антерсон) и советских (А. С. Серебровский и его школа) ученых, мы все еще не можем сказать, что для нас ясны внутренние закономерности мутационной изменчивости. Мы знаем уже много процессов в хромосомном аппарате, обусловливающих характер той или иной мутации, транслокации, нехватки, делегации, реверсы; дупликации и имеем уже некоторые указания экспериментального характера на важную роль этих процессов в эволюции и структуре хромосом.
Так сравнение хромосом крысы и мыши приводит американского автора Т. С. Пайнтера к заключению (1928), что хотя масса хроматина у обоих видов приблизительно одна и та же и число хромосом у них почти одинаково (42 и 40), тем не менее, распределение хроматина между хромосомами очень различно. Этот факт наводит на мысль, что крыса и мышь, по всей вероятности, должны были произойти от какого-то общего ствола. Распадение этого ствола на отдельные части произошло, по-видимому, вследствие перераспределения хроматина между различными негомологичными хромосомами. Моллер и Пайнтер в общей статье, опубликованной в 1929, снова возвращаются к этому вопросу и подчеркивают важное значение подобных хромосомных изменений в процессах видообразования.
«Открытие того, —пишут они, —что подобные разного рода транслокации происходят в результате абсорбции широко рассеянных в природе лучей короткой длины волн, служит хорошим подтверждением такого рода объяснений и заставляет придать ему более общее значение в эволюции видов».


